945 resultados para Blood gas analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction The admission to the Intensive Care Unit with a diagnosis of sepsis and/or septic shock is not uncommon. The aim of this article is to present a nursing case review of a patient admitted to the intensive care unit with a diagnosis of septic shock and the use of bedside acid–base formulae to inform clinical decision making. Method We chose to use a case review. This method is useful in reporting unusual or rare cases and is typically seen more in medicine than in nursing. Discussion The gentleman in question was a self-presentation with a short history of fever and worsening shortness of breath. His condition worsened where he required admission to the intensive care unit. The use of ‘advanced’ acid–base interpretation to guide his nursing care provided a platform from which to advance a deeper understanding of the intricacies the critically ill patient often presents. Conclusion The use of case review is enlightening in understanding the disease process and the decision-making that accompanies this. The lessons learnt are applicable to a wider nursing audience because understanding acid–base physiology is beneficial in supporting and advancing critical care nursing practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a surfactant-depletion model of lung injury, tidal recruitment of atelectasis and changes in shunt fraction lead to large Pao2 oscillations. We investigated the effect of these oscillations on conventional arterial blood gas (ABG) results using different sampling techniques in ventilated rabbits. In each rabbit, 5 different ventilator settings were studied, 2 before saline lavage injury and 3 after lavage injury. Ventilator settings were altered according to 5 different goals for the amplitude and mean value of brachiocephalic Pao2 oscillations, as guided by a fast responding intraarterial probe. ABG collection was timed to obtain the sample at the peak or trough of the Pao2 oscillations, or over several respiratory cycles. Before lung injury, oscillations were small and sample timing did not influence Pao2. After saline lavage, when Po2 fluctuations measured by the indwelling arterial Po2 probe confirmed tidal recruitment, Pao2 by ABG was significantly higher at peak (295 +/- 130 mm Hg) compared with trough (74 +/- 15 mm Hg) or mean (125 +/- 75 mm Hg). In early, mild lung injury after saline lavage, Pao2 can vary markedly during the respiratory cycle. When atelectasis is recruited with each breath, interpretation of changes in shunt fraction, based on conventional ABG analysis, should account for potentially large respiratory variations in arterial Po2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Resuscitated cardiac arrest (CA) patients typically receive therapeutic hypothermia, but arterial blood gases (ABGs) are often assessed after adjustment to 37°C (alpha-stat) instead of actual body temperature (pH-stat). We sought to compare alpha-stat and pH-stat assessment of PaO2 and PaCO2 in such patients. MATERIALS AND METHODS: Using ABG data obtained during the first 24 hours of intensive care unit admission, we determined the impact of measured alpha vs calculated pH-stat on PaO2 and PaCO2 on patient classification and outcomes for CA patients. RESULTS: We assessed 1013 ABGs from 120 CA patients with a median age of patients 66 years (interquartile range, 50-76). Median alpha-stat PaO2 changed from 122 (95-156) to 107 (82-143) mm Hg with pH-stat and median PaCO2 from 39 (34-46) to 35 (30-41) mm Hg (both P < .001). Using the categories of hyperoxemia, normoxemia, and hypoxemia, pH-stat estimation of PaO2 reclassified approximately 20% of patients. Using the categories of hypercapnia, normocapnia, and hypocapnia, pH stat estimation of PaCO2 reclassified approximately 40% of patients. The mortality of patients in different PaO2 and PaCO2 categories was similar for pH-stat and alpha-stat. CONCLUSIONS: Using the pH-stat method, fewer resuscitated CA patients admitted to intensive care unit were classified as hyperoxemic or hypercapnic compared with alpha-stat. These findings suggest an impact of ABG assessment methodology on PaO2, PaCO2 , and patient classification but not on associated outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hematological status in rainbow trout, Salmo gairdneri, was examined in relation to eight combinations of three environmental fa ctors; temperature (5°, 20°C), oxygen availability «35%, >70% saturation) and photoperiod (16L:8D, 8L:16D) and evaluated by 3-factor analysis of variance. Hemog l obin and hematocrit , indicators of oxygenc arrying capacity increased significantly at the higher temperature, following exposure to hypoxia and in relation to reduced light period. Significant variations in mean corpuscular hemoglobin concentration were not detected. The effects of temperature and oxygen availability were more pronounced than that of photoperiod which was generally masked. Although oxygen availability and photoperiod did not interact with temperature, the interaction of the former fac tors was significant. Elec trophoresis revealed twelve hemoglobin isomorphs. Relative concentration changes were found in re lation to the factors c onsidered with temperature>hypoxia>photoperiod. Howeve r , in terms of absolute concentration, effects were hypoxia>temperature>photoperiod. Photoperiod effects were again masked by temperature and (or) hypoxia. Red cell +2 l eve ls of [CI ] and [Mg ], critical elements in the hemoglobin-oxygen affinity regulating system, were also significantly altered. Red cell CI +2 was influenced only by temperature ; Mg by temper ature and oxygen. No photoperiod influence on either ions was observed. Under nominal 'summer' conditions, these changes point to the likelihood of increases in oxygen-c arrying c apac ity coupled with low Hb-02 affinity adjustments which would be expected to increase oxygen delivery rates to their more rapidly metabolising tissues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Avaliou-se a pressão intra-ocular (PIO) e estimaram-se as correlações entre PIO e pressão de dióxido de carbono (PaCO2) e pH arterial de cinco caracarás (Caracara plancus), anestesiados com isofluorano (ISO) ou sevofluorano (SEV). Valores basais da PIO foram aferidos em ambos os olhos (M0). Cateterizou-se previamente a artéria braquial para obtenção de parâmetros hemogasométricos e cardiorrespiratórios. Anestesia foi induzida com ISO a 5V% e mantida por 40 minutos com 2,5V%. PIO e amostras de sangue foram avaliadas em diferentes momentos até o final do procedimento. Após recuperação, uma segunda anestesia foi realizada com SEV a 6% e mantida com 3,5%. Os parâmetros foram aferidos nos mesmos momentos estabelecidos previamente. A PIO decresceu significativamente (P=0,012) de M0 em todos os momentos e não houve diferença estatística entre ISO e SEV. Correlações significativas entre PIO e PaCO2 e entre PIO e pH sangüíneo foram observadas apenas para a anestesia com SEV. O pH sangüíneo decresceu paralelamente a PIO, enquanto a PaCO2 aumentou, em carcarás anestesiados com isofluorano e sevofluorano.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective To compare results reported for blood gas partial pressures, electrolyte concentrations, and Hct in venous blood samples collected from cattle, horses, and sheep and analyzed by use of a portable clinical analyzer (PCA) and reference analyzer (RA).Animals-Clinically normal animals (24 cattle, 22 horses, and 22 sheep).Procedures-pH; Pco(2); Po(2); total carbon dioxide concentration; oxygen saturation; base excess; concentrations of HCO(3)(-), Na(+), K(+), and ionized calcium; Hct; and hemoglobin concentration were determined with a PCA. Results were compared with those obtained for the same blood sample with an RA. Bias (mean difference) and variability (95% confidence interval) were determined for all data reported. Data were also subjected to analyses by Deming regression and Pearson correlation.Results-Analysis of Bland-Altman plots revealed good agreement between results obtained with the PCA and those obtained with the RA for pH and total carbon dioxide concentration in cattle, K(+) concentration in horses and sheep, and base excess in horses. Except for Na(+) concentration and Hct in horses and sheep, correlation was good or excellent for most variables reported.Conclusions and Clinical Relevance-Data from blood gas and electrolyte analyses obtained by use of the PCA can be used to evaluate the health status of cattle, horses, and sheep. Furthermore, the handheld PCA device may have a great advantage over the RA device as a result of the ability to analyze blood samples on farms that may be located far from urban centers. (Am J Vet Res 2010;71:515-521)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal decomposition process of kaolinite–potassium acetate intercalation complex has been studied using simultaneous thermogravimetry coupled with Fourier-transform infrared spectroscopy and mass spectrometry (TG-FTIR-MS). The results showed that the thermal decomposition of the complex took place in four temperature ranges, namely 50–100, 260–320, 320–550, and 650–780 °C. The maximal mass losses rate for the thermal decomposition of the kaolinite–potassium acetate intercalation complex was observed at 81, 296, 378, 411, 486, and 733 °C, which was attributed to (a) loss of the adsorbed water, (b) thermal decomposition of surface-adsorbed potassium acetate (KAc), (c) the loss of the water coordinated to potassium acetate in the intercalated kaolinite, (d) the thermal decomposition of intercalated KAc in the interlayer of kaolinite and the removal of inner surface hydroxyls, (e) the loss of the inner hydroxyls, and (f) the thermal decomposition of carbonate derived from the decomposition of KAc. The thermal decomposition of intercalated potassium acetate started in the range 320–550 °C accompanied by the release of water, acetone, carbon dioxide, and acetic acid. The identification of pyrolysis fragment ions provided insight into the thermal decomposition mechanism. The results showed that the main decomposition fragment ions of the kaolinite–KAc intercalation complex were water, acetone, carbon dioxide, and acetic acid. TG-FTIR-MS was demonstrated to be a powerful tool for the investigation of kaolinite intercalation complexes. It delivers a detailed insight into the thermal decomposition processes of the kaolinite intercalation complexes characterized by mass loss and the evolved gases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The products evolved during the thermal decomposition of the coal-derived pyrite/marcasite were studied using simultaneous thermogravimetry coupled with Fourier-transform infrared spectroscopy and mass spectrometry (TG-FTIR–MS) technique. The main gases and volatile products released during the thermal decomposition of the coal-derived pyrite/marcasite are water (H2O), carbon dioxide (CO2), and sulfur dioxide (SO2). The results showed that the evolved products obtained were mainly divided into two processes: (1) the main evolved product H2O is mainly released at below 300 °C; (2) under the temperature of 450–650 °C, the main evolved products are SO2 and small amount of CO2. It is worth mentioning that SO3 was not observed as a product as no peak was observed in the m/z = 80 curve. The chemical substance SO2 is present as the main gaseous product in the thermal decomposition for the sample. The coal-derived pyrite/marcasite is different from mineral pyrite in thermal decomposition temperature. The mass spectrometric analysis results are in good agreement with the infrared spectroscopic analysis of the evolved gases. These results give the evidence on the thermal decomposition products and make all explanations have the sufficient evidence. Therefore, TG–MS–IR is a powerful tool for the investigation of gas evolution from the thermal decomposition of materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioethanol is the world's largest-produced alternative to petroleum-derived transportation fuels due to its compatibility within existing spark-ignition engines and its relatively mature production technology. Despite its success, questions remain over the greenhouse gas (GHG) implications of fuel ethanol use with many studies showing significant impacts of differences in land use, feedstock, and refinery operation. While most efforts to quantify life-cycle GHG impacts have focused on the production stage, a few recent studies have acknowledged the effect of ethanol on engine performance and incorporated these effects into the fuel life cycle. These studies have broadly asserted that vehicle efficiency increases with ethanol use to justify reducing the GHG impact of ethanol. These results seem to conflict with the general notion that ethanol decreases the fuel efficiency (or increases the fuel consumption) of vehicles due to the lower volumetric energy content of ethanol when compared to gasoline. Here we argue that due to the increased emphasis on alternative fuels with drastically differing energy densities, vehicle efficiency should be evaluated based on energy rather than volume. When done so, we show that efficiency of existing vehicles can be affected by ethanol content, but these impacts can serve to have both positive and negative effects and are highly uncertain (ranging from -15% to +24%). As a result, uncertainties in the net GHG effect of ethanol, particularly when used in a low-level blend with gasoline, are considerably larger than previously estimated (standard deviations increase by >10% and >200% when used in high and low blends, respectively). Technical options exist to improve vehicle efficiency through smarter use of ethanol though changes to the vehicle fleets and fuel infrastructure would be required. Future biofuel policies should promote synergies between the vehicle and fuel industries in order to maximize the society-wise benefits or minimize the risks of adverse impacts of ethanol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fast response sensor for measuring carbon dioxide concentration has been developed for laboratory research and tested on a spark ignition engine. The sensor uses the well known infra-red absorption technique with a miniaturized detection system and short capillary sampling tubes, giving a time constant of approximately 5 milliseconds; this is sufficiently fast to observe changes in CO2 levels on a cycle-by-cycle basis under normal operating conditions. The sensor is easily located in the exhaust system and operates continuously. The sensor was tested on a standard production four cylinder spark-ignition engine to observe changes in CO2 concentration in exhaust gas under steady state and transient operating conditions. The processed sensor signal was compared to a standard air-to-fuel ratio (AFR) sensor in the exhaust stream and the results are presented here. The high frequency response CO2 measurements give new insights into both engine and catalyst transient operation. Copyright © 1999 Society of Automotive Engineers, Inc.